Porting NASA’s core Flight System to the Formally
Verified selL.4 Microkernel

Juliana Furgala, Samuel Jero, Andrea Lin, Richard Skowyra
MIT Lincoln Laboratory
{juliana.furgala, samuel.jero, andrea.lin, richard.skowyra} @1l.mit.edu

Abstract—Satellite systems provide crucial services for the
modern world, including global position, navigation, and timing
as well as world-wide communication, earth imaging for weather
forecasting, and a host of other functions. Due to the critical
nature of these services and their increasing importance, satellites
are increasingly targeted by attackers, including both criminals
and nation-state actors. Unfortunately, the software controlling
these satellites has not been designed with security in mind due
to the assumption that access is difficult. With the increasing
commodification of space, that assumption no longer holds,
leaving these systems exposed and vulnerable.

In this paper, we share our experience attempting to combine
real flight software with a key security technology developed by
the security community. In particular, our goal is to run NASA’s
core Flight System (cFS) on top of the formally verified sel.4
microkernel to eliminate vulnerabilities related to the operating
system and provide a strong foundation for satellite software
systems. While we were successful at doing so, it required more
than a year of effort and the development of a significant set of
operating system services beyond the sel.4 microkernel. Along
the way, we learned some key lessons about flight software and
security technologies like sel4.

I. INTRODUCTION

Today, satellites provide essential capabilities for modern
life, including global positioning and navigation provided by
Global Navigation Satellite System (GNSS) constellations,
meteorological imaging for weather prediction, and world-
wide communication with hand-held equipment. GNSS con-
stellations are essential for everything from navigating a new
city using your smart phone to ensuring accurate time on
everything from trains to ATMs. Proliferated Low Earth Orbit

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported under Air
Force Contract No. FA8702-15-D-0001 or FA8702-25-D-B002. Any opinions,
findings, conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the U.S. Air
Force. © 2025 Massachusetts Institute of Technology. Delivered to the U.S.
Government with Unlimited Rights, as defined in DFARS Part 252.227-7013
or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government
rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-
7014 as detailed above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist in this work.

Workshop on Security of Space and Satellite Systems (SpaceSec) 2026
23 February 2026, San Diego, CA, USA

ISBN 978-1-970672-02-2
https://dx.doi.org/10.14722/spacesec.2026.23003
www.ndss-symposium.org

(pLEO) constellations, like Starlink, provide low-latency, high-
throughput Internet access almost anywhere in the world. More
recently, we have seen the power of earth imagery and RF
data collected by satellites in near-real time to understand the
conflicts in both Ukraine [1f], [2] and Iran [3].

Since satellites provide such critical services, it should come
as no surprise that we are increasingly seeing attacks targeting
these services and the satellites providing them. Historically,
satellites were extremely custom systems, and it required com-
plex, expensive equipment to communicate with them. How-
ever, the increasing commodification of space and increasing
reliance on Commercial-Off-The-Shelf (COTS) components
make satellites much more accessible to attackers. At this
point, it is routine to experience GNSS jamming in and around
contested areas [4], and nation-state actors have demonstrated
willingness to target satellite systems, as evidenced by Russia’s
attack on the Viasat KA-SAT system immediately prior to
their invasion of Ukraine [5]]. Since that time, we have seen
further attacks on Viasat by Salt Typhoon [[6] and government
targeting of Starlink [7]]. Competitions like DARPA’s Hack-A-
Sat have also provided insight into what a motivated attacker
could do against a satellite [8]]. All of this has left operators
of satellite systems increasingly concerned about the cyber-
security of their systems.

Satellites operate in a physically hostile environment with
dramatic temperature swings and significant cosmic radiation
and are usually significantly constrained by Size, Weight, and
Power (SWaP). They also operate under the unique constraint
that once launched there is effectively no possibility of human
intervention during their entire operational lifespan, which is
usually years if not decades. Prior work has explored these
challenges and their implications in significant detail [9], [10].

As a result of these challenges, flight software for these
systems tends be written in low level languages like C/C++
and to rely on specialized proprietary real-time operating
systems, often with custom platform support. Although this
software is carefully designed and tested to ensure correct
behavior under benign failures, little effort is put into ensuring
correct behavior in the face of malicious adversaries. In the
cases where this software was available to researchers for
examination, both fuzzing [11], [[12] and manual analysis [[13]]
have revealed a significant number of critical vulnerabilities.

Security practitioners and researchers have developed many
tools, techniques, and systems that could potentially be de-

ployed on satellites to eliminate or mitigate the current vul-
nerabilities and create more secure flight software for satellites.
These techniques include modern memory safe languages
like Rust, techniques like CFI [[14] and ShadowStacks [|15]]
to mitigate vulnerabilities in unsafe languages, isolation ap-
proaches like Software Fault Isolation [[16] and HAKCs [17]],
and formally verified parsers [18] and microkernels [[19]. Not
all of these techniques will be appropriate or mature enough
for highly embedded systems like satellites, but some of them
are likely to be both suitable and beneficial.

In this paper, we share our experience attempting to com-
bine real satellite flight software with an operating system ker-
nel developed and formally verified by the security community.
In particular, we focus on running NASA’s core Flight System
(cFS) [20], a leading flight software that has been used in
dozens of missions over 20 years, on the formally verified seL.4
microkernel [[19]. Successfully doing this would dramatically
improve the security of satellite systems by removing or
reducing the impact of vulnerabilities in the operating system.

While we were able to successfully demonstrate cFS run-
ning on sel4, it required more than a year of effort and the
development of a significant set of operating system services
beyond just the sel.4 microkernel. While these services are
not verified and thus likely contain bugs, the separation of
the operating system into multiple components itself provides
significant security improvements [21]], [22]. We write these
services in Rust to minimize the risk of memory safety
vulnerabilities.

We also document a number of key lessons learned about
satellite flight software and systems security technologies,
including the surprising dynamism of satellite flight software,
the impacts of availability as a key priority on software design,
the importance of designing flight software with multiple
components, and the complexity of microkernel operating
systems.

The remainder of this paper is organized as follows. Sec-
tion [[I] provides background on flight software, NASA’s core
Flight System, and seL.4. Section [[II| then presents our analysis
of cFS to understand its requirements and assumptions. We
then describe our effort to port cFS to seL4 and the design
of our operating system services in section Section [V]
presents an evaluation of the performance of our system while
section [V]] describes the lessons learned from this effort and
section offers some discussion other OSes used on space
vehicles. Finally, we conclude in section

II. BACKGROUND

This section provides background on satellite flight software
in general, NASA’s core Flight System in particular, and the
seL4 microkernel.

A. Satellite Flight Software

Satellite flight software is effectively the autonomic nervous
system of a satellite. It is responsible for keeping the space
vehicle operational as well as maintaining communication
with the ground, including sending telemetry and processing

commands. Keeping the space vehicle operational involves
ensuring sufficient power supply; the flight software makes ori-
entation decisions to ensure that batteries charge sufficiently,
and it controls what components of the vehicle are powered on
and drawing power at any given moment. Another major com-
ponent of ensuring that the space vehicle remains operational
is controlling the orientation of the vehicle using sensors and
actuators like reaction wheels. This also involves significant
complexity as changes in orientation may be necessary to
achieve specific mission goals or to avoid physical damage,
for instance, by pointing a camera at the sun.

The flight software also provides the primary means for
operators on the ground to interact with the satellite, by
sending telemetry about the performance of the spacecraft and
receiving control commands from the ground and acting on
them. It often also controls the transmission of mission data,
like imagery or sensor data.

Because of the critical role that flight software plays in
satellites, it also often includes one or more safe modes. These
are modes of operation that are entered when unexpected or
erroneous conditions occur, often as a result of a hardware
failure or programming bugs. These modes are designed to
ensure that the satellite remains safe, conserves battery power,
and is able to communicate with the ground, so that operators
can examine the situation and work to correct it.

Unfortunately, there is a growing body of work indicating
that satellite flight software is also extremely vulnerable to
adversarial attack. While historically expensive radio equip-
ment might have been required to send data to these satellites
and opportunities for supply chain attacks were rare, this is
no longer the case. Consumer software defined radios have
dramatically lowered the barrier to entry. Further, it is in-
creasingly common for satellites to reuse significant quantities
of existing software, both open-source and proprietary. Prior
work examining open source flight software has confirmed this
general state of vulnerability [11]-[13]].

B. NASA’s core Flight System (cFS)

NASA cFS is a widely used and open-source flight software
framework developed by NASA Goddard. It has been used
in over 40 missions by multiple different space agencies and
across a variety of different space systems including satellites,
landers, rovers, crew habitats, and even space suits [23].
Originally developed in 2004 as a modular, reusable system
to enable NASA to develop software for two major missions
simultaneously [24]], it since grown into framework offering a
core set of standard components and many optional applica-
tions to help missions quickly build out their needed software
stack [25].

cFS is written in C and based on a message bus architecture.
A small set of services make up the core Flight Executive,
or the core of the system. These include the software data
bus, an executive service responsible for launching and man-
aging other applications, time services, event services, and
table services, which are responsible for storing adjustable
parameters for other applications in tables conceptually similar

TABLE I
CAPABILITIES IN SEL4

Capability Description
Type
Untyped Raw memory to create other capabilities
Page A page (technically frame) of memory
Page Table A page table
TCB A thread control block for a thread
CNode A table that holds capabilities
Endpoint A synchronous communication endpoint used for IPC
Notification An asynchronous communication primitive somewhat

similar to an array of mutexes
Interrupt Controls access to and configuration of an interrupt
1/0 port Controls access to I/O ports (x86 only)
ASID Controls access to Address Space IDs in the TLB

to a database [25]. Around this core a variety of optional
apps are provided to support periodic housekeeping telemetry,
scheduled commands, communication protocols like CCSDS
File Delivery Protocol (CFDP), and many other features.
Finally, missions usually add custom apps to cFS to manage
their particular mission payloads and functionality.

C. sel4

seL4 is a formally verified microkernel of L4 heritage [19],
[26]. Its proofs guarantee functional correctness. This correct-
ness property means that seL.4’s code correctly implements the
specification describing its behavior. Importantly, because the
specification does not describe things like buffer overflows
and panics, this proves the code free from large classes of
vulnerabilities and bugs. Additionally, seL4’s proofs guarantee
binary correctness and ensure that its API provides integrity.
seL4 is one of the largest formal verification efforts to date,
requiring over 30 person years of effort to verify its roughly
9,000 lines of C code [19].

seL.4’s L4 heritage means that it offers extremely fast IPC,
unlike older microkernel designs that developed a reputation
for poor performance [27]. It also uses capabilities as its means
of controlling access to system resources. Capabilities are,
formally, unforgeable tokens of authority [28]]. In other words,
they are handles used to control resources, in a manner very
similar to a UNIX file descriptor. Table [[] lists the capabilities
that exist in selL4.

It’s also important to realize that seL4 is a microkernel. It
only provides functionality that must be provided in kernel
mode, leaving many key aspects of operating systems (OSes)
to userspace. In particular, seL.4 provides scheduling and
address spaces, leaving all other parts of operating system
functionality, like executable loading, device drivers, and net-
working to userspace. To help with all of this functionality,
selL4-based systems often use CAmKES [29] or, more recently,
Microkit [30] to load a set of processes and connect them
together into a functioning system. These systems take a
configuration describing a set of executable processes that cor-
respond via IPC or shared memory. At boot, they then handle
the process of creating and loading the defined processes and
connecting them together as specified.

IITI. ANALYSIS OF CFS

In this section, we explore the architecture of cFS in more
detail and describe our initial analysis of cFS and the operating
system functionality it requires.

As previously discussed, cFS is designed with a message
bus architecture. In other words, all cFS applications connect
to a message bus and can send or receive messages from
other applications using this bus. In this way, applications
can communicate with each other or with the ground as
needed. Figure [T]illustrates this design. It shows the core cFS
services, called the core Flight Executive (cFE), along with
other standard cFS apps and mission apps all connected to
the message bus. These core services include the message
bus itself (SB), an executive responsible for launching and
controlling all other applications, time services responsible
for keeping track of time, event services responsible for key
system events, and table services, which is similar to a simple
database and responsible for storing adjustable parameters
for other applications [25]. Other illustrated apps include the
housekeeping app for providing regular status messages to be
sent to the ground, a scheduled commands app for running
commands at particular moments in time, and a limit checker
app for ensuring that parameters stay within defined limits
and issuing alarms if they do not. Mission-specific apps, like
Command Ingest and Telemetry Output, handle interfacing
with mission hardware, like sending telementry or receiving
commands over the radio.

From a software architecture perspective, cFS is built with
a number of layers and abstractions, as illustrated in Figure [2]
cFS assumes that some operating system is running on the
space vehicle’s flight computer. In fact, cFS supports a wide
variety of operating systems, including Linux, VxWorks, and
RTEMS. To accomplish this, cFS introduces two abstraction
layers: the Operating System Abstraction Layer (OSAL) and
the Platform Support Package (PSP). These layers describe
a system-agnostic API for operating system functionality re-
quired by cFS and then implement that API for each of the
supported operating systems.

cFS is implemented in C as a single-process architecture
with many threads. Each application in cFS consists of one
or more threads. This design makes the message bus architec-
ture extremely efficient, as only pointers to data need to be
passed around. However, it also makes the system extremely
complicated as all applications live in the same address space.
cFS also makes several unusual design decisions to ensure
that it can operate in real-time environments. For instance,
cFS does not allocate heap memory at all, as asking the OS
for memory could take a significant amount time in the worst
case, or might even fail. Instead, cFS prefers to use global
variables and fixed size arrays of objects. Although unusual,
this approach is frequently used in other real-time systems,
including other flight software.

As the first step of porting cFS to run on sel.4, we set out to
characterize what functionality a minimal cFS setup requires
from the operating system. We used cFS version 7.0.0-rc4

Limit
Checker:

Memory:
S Dwell

Scheduler

Power &
Support

Recorder
Manager

Space
Wire

" Data

|
|

:Stora\:gé :

Inter-app Message Router (Software Bus)

!

|

Fig. 1. A typical cFS system, from [25]

Development Tools g‘r/;z‘:‘z Application Performance Performance Unit Tests Build
& Ground Systems Sy Generator Tools Analyzer System
Data File House- Health/
I Gl | I Jice U | I Sto@g \MQL‘ \ﬂpl_nq_‘ \M}J
Application I Limit ‘ I Memory ‘ Memory Scheduler SB Stored
Checker Dwell Manager Network Commands
| Core Flight Executive API |
Core Fl!g ht | Core Flight Executive ‘
Executive
| OS Abstraction API | | Platform Support Package API |
Platform - Mcp750-
Abstraction ‘ LS H V= | | L | M e °

RTOS /Boot

Board Support Package I

PROM Boot FSW |

cFE Open Source

O OSAL Open Source
Release

Release

O

Application Open
Source Releases

M 3¢ Party O Mission ‘

Developed

Fig. 2. Software Architecture of cFS, from [25]

and focused on a minimal system containing the five core
cFS services plus the housekeeping app, which sends periodic
status messages, and test versions of the Command Ingest and
Telemetry Output apps. This minimal cFS setup will be the
focus of the remainder of this paper.

We characterized the required functionality by examining
the OSAL to understand what OS functionality it contained
and by examining which parts of that were called by our
minimal set of apps. Our analysis revealed approximately
36 types of operating system functionality required by this
minimal cFS setup. This functionality covered a range of
common OS primitives, including threading, message queues,
timers, and synchronization primitives (e.g., mutexes and

semaphores). The details are shown in Table Note that
although it is possible to use filesystems and networking in
cFS apps, our paired down setup does not require these calls,
which dramatically simplified our efforts.

IV. PORTING CFS TO SEL4

This section describes our experience porting cFS to seL4.
We targeted the armv7a Xilinx Zed Board (ZC702) devel-
opment kit as our target hardware because it is both well
supported by selL4 and has previously flown in space. As
mentioned before, we use cFS version 7.0.0-rc4.

TABLE 11
OS FUNCTIONALITY REQUIRED BY CFS

Operation Type Operations
threading create, destroy, exit, delay, set priority, get id,
my id, match

binary semaphores
counting semaphores

create, give, take, timed wait, delete, get info
create, give, take, timed wait, delete, get info

mutex create, give, take, delete, get info
message queues create, delete, receive, send

time get current time

timers create, start, cancel, delete, lock, unlock
1/0 print

We started this effort using all of the existing tooling
surrounding seL4 including CAmkES [29 and the unverified
support libraries written in C. CAmKES is a component based
framework that statically defines a set of processes/threads in
a system and the connections between them. It assumes the
use of tens of thousands of lines of unverified C libraries to
help C applications do things like allocate memory or manage
seL4 capabilities.

In terms of the operating system functionality that cFS
requires, it is actually fairly possible to map these to sel.4
capabilities. A thread corresponds to selL.4’s TCB (Thread
Control Block) capability. Semaphores and mutexes can be
created using a couple of variables and an selL4 notification
object capability. A message queue is a chunk of memory
and a semaphore. Time and Timers are a little harder because
they require the implementation of a device driver to access
and configure hardware timers. However, CAmKES actually
includes this functionality for several common platforms.
Similarly, I/O requires a UART driver, which is also available
in CAmKES.

The major issue we ran into was that CAmKES requires all
of its resources to be specified statically up front in a con-
figuration file. This fits poorly with the design of cFS, where
all of these operating system resources are expected to be
created and destroyed dynamically. cFS does have a maximum
number of these resources that can be in use at any given time,
but because resources can be created and destroyed, the total
number is actually unbounded. Our solution to this was to use
dynamic analysis to determine how many of each resource
(e.g., threads, semaphores, mutexes, efc.) were actually used.
We could then adjust the CAmKES configuration file to include
the appropriate number of resources, allowing cFS to run on
selL4.

While this approach achieved our goal of running cFS on
seL4, it was unsatisfactory for several reasons. First, this
mismatch between cFS’s dynamic approach to resources and
CAmKES very static approach is concerning. Although we
could determine an appropriate number of resources using
dynamic analysis, there is no guarantee that some rare code
path would not require more resources, which would lead to

'We noted earlier that CAmKES has since been replaced with Microkit [30];
however, this initial effort predated the development of Microkit by several
years. Further, Microkit follows the same static design principles, which
ultimately caused us problems as discussed later on.

Legend

T Thread || [Thread n Thread | | [Threadn
core Flight System (cFS) Application (Rust)
Libmagnetite (C) Libmagnetite (Rust)

App Library
& Support
Services

Start-up Only
i Component ! l

[cFS Escrow Process | l App Escrow Process |

l Channel Service H Event Service H Logging Service |

Timer Service | [Synchronization Service|

| [Untyped Manager | [Fault Handler |
Loader

l Storage

Root Task

‘ seL4 ‘

Fig. 3. Architecture of our Magnetite operating system

a system crash. We would also have to perform this dynamic
analysis every time we added additional apps or functionality
to the system, leading to increasing likelihood of missing
interactions and code paths as the system gets more complex.
For flight software that may need to operate unattended for
years, and for a domain where physical access to the system
post-launch is impossible, these seem like unacceptable risks.

Second, we were concerned with the quantity of unverified
C code present in CAmKES-based seL4 systems. Ultimately,
we had several tens of thousands of lines of unverified C in our
system. Since the selL4 kernel is only about 9,000 lines of C,
we actually end up with more unverified C code than verified
C code in our operating system. Of course, this unverified
code is less critical than and is isolated by the verified code.
However, the entire point of porting cFS to sel4 was to
improve the security of the operating system by leveraging
formal verification.

These issues lead us to return to the drawing board and
consider what a more appropriate architecture might look
like. As a result, we decided that actually building a new
operating system around selL.4 was necessary. By building a
new operating system, we could support the dynamic creation
and deletion of resources that cFS expects, thereby mitigating
our first major problem. Further, our new operating system,
which we call Magnetite, could be written in Rust. While we
are not able to formally verify the entire operating system, at
least at this moment, Rust enables us to mitigate the memory
safety vulnerabilities that have historically plagued operating
systems and similar systems software.

The architecture of our Magnetite operating system is shown
in Figure [3] It is largely designed around providing the oper-
ating system functionality required by cFS while being able
to support multiple applications and following the principle
of least privilege [21[], [22]. We continue to use sel.4, but
remove CAmKES entirely. Instead, we built an entirely new,
short-lived root task and set of system services. Motivated by
the principle of least privilege, we separate out the required
operating system functionality into multiple services, with
each type of functionality handled by its own service. In this
way, the compromise of one service would not allow attackers

TABLE III
COMPARISON OF MAGNETITE TO REAL-TIME LINUX ON MICROBENCHMARKS. NUMBERS IN CPU CYCLES.

Magnetite Linux

Avg | Std Dev | 95%tile | Max Avg | Std Dev | 95%tile | Max
Context Switch: Thread 504 0 504 550 1,061 25 1,077 3,232
Context Switch: Process 498 1 498 599 4,817 327 4,858 17,919
Round Trip IPC 1,136 3 1,137 1,241 - - - -
Event Latency: equal prio 8,788 185 9,095 10,393 - - - -
Event Latency: L2H prio 8,790 181 9,093 9,870 - - - -
Event Latency: H2L prio 14,138 292 14,613 17,614 - - - -
Mutex Uncontended 6,301 292 6,745 8,615 217 2 217 328
Mutex Contended 15,574 285 16,042 | 17,394 15,844 619 16,263 | 30,570
Semaphore Uncontended 5,360 200 5,689 6,348 117 90 116 9,112
Semaphore Contended 11,661 250 12,070 12,741 6,714 404 6,994 | 22,136
Timer Latency 20,666 1,068 21,171 33,118
Timer Latency w/ timerfd || 1220 210 112,536 | 13907 | “¢'404 632 | 6842 | 14.806
Channel Latency: L2H prio 18,367 286 18,850 | 20,038 9,439 423 9,627 | 22,671
Channel Latency: H2L prio 18,505 273 18,983 20,271 11,508 841 11,711 71,169

to trivially pivot to other parts of the operating system.

The bottom layer of our operating system is its root task.
This is the component that sel.4 starts once it finishes booting.
Its job is to standardize the system and hand off to the loader.
The loader is the largest and most important of Magnetite’s
six core services. It is responsible for managing processes,
threads, and memory allocation as for handling the loading
of all other services and applications in the system. To do
this, the loader exposes an API for creating and destroying
threads that is used by cFS’s OSAL and another for memory
allocation used by other services. The loader also starts two
threads to handle sel.4 capabilities and faults that occur in
system services.

The other five services each provide one particular type of
functionality for applications. The synchronization service, for
instance, provides semaphore and mutex primitives for use by
applications. We implement mutexes with priority inheritance
to support cFS. This means that if a low priority thread locks
a mutex and then a higher priority thread blocks waiting for
the mutex, the low priority thread temporarily has its priority
raised until it is done with the mutex. This is a crucial feature
for real-time systems, to prevent a low priority computation
from stalling a high priority computation. It is also a feature
that we did not support in our first implementation with
CAmKES.

The timer and logging services provide device drivers for
hardware timers and serial devices, respectively. They then
expose those devices to applications over special APIs that cFS
can call. The timer service is slightly more complex, because
it has to multiplex a potentially arbitrary number of user timers
onto a limited set of hardware timers. We use a timer wheel
construction to do this, where user timers are binned together
and triggered using a single periodic hardware timer.

Similarly, the channel service provides message queues to
applications. These queues operate by sending messages to the
service, which then queues those messages for the receiving
application. These queues have configurable message size and
queue depth. Finally, the event service allows applications to
wait on any one of multiple events to occur, like a message

being available in a queue or a timer firing. Other services
notify the event service of these events, which can then trigger
waiting applications.

All of these services provide APIs over InterProcess Com-
munication (IPC). To enable applications to easily call these
APIs, Magnetite provides libraries in C and Rust that wrap
these IPC calls in simple function calls. Because cFS is
designed to support multiple operating systems, it was a simple
matter to add a new OSAL backend for Magnetite that makes
the appropriate API calls.

With all of these services and libraries implemented, we
were then able to run cFS on selL4 using our Magnetite operat-
ing system. We found that we were able to add additional apps
to cFS without modifying Magnetite, validating our choice
to create an operating system to support dynamic resources.
We have subsequently found that other flight software like
CHSS [31] and F-prime [32] make similar assumptions about
being able to create resources dynamically. This validates the
need for this functionality and our creation of a new operating
system supporting it.

Creating an operating system, even a very simple one, is
no small task. Our initial version of Magnetite, capable of
running cFS, took a team of three developers almost a year
and a half to create. Since then, we have continued to expand
Magnetite with more functionality. It now provides shared
memory, networking, and a filesystem as well as a significantly
expanded set of device drivers. Additionally, it supports the
aarch64 and x86_64 architectures in addition to armv7a.

Overall, our experience demonstrates that it is possible to
adapt academic security technologies like sel4 for use in
satellite flight software. However, it also highlights that doing
S0 is not an easy task.

V. EVALUATION

In this section we evaluate the performance of Magnetite,
our new operating system on seL4. Our goal is to understand
the possible impact of introducing a secure operating system
under cFS.

We use a series of microbenchmarks to compare the
performance of key operating system operations utilized by
cFS, including context switches, mutex locking/unlocking,
semaphore operations, and timer latencies. As our baseline,
we use the Linux kernel with the PREMPT_RT patch, a con-
figuration usually called real-time Linux. Although dedicated
real-time operating systems (RTOSes) are more common for
space systems, they are usually either extremely expensive or
difficult to configure. However, Linux has been used in space
systems [33]], and its real-time performance is acceptable in
many other domains.

We use a Zyng-7000 XC7Z020 SoC for our evaluation. It
includes a dual-core Arm Cortex-A9 processor running at 667
MHz and a Xilinx FPGA. We use only a single core for this
evaluation and do not use the FPGA at all. Our benchmarks are
written in C and compiled with gcc version 9.4.0; Magnetite
uses Rust version nightly-2022-07-14. We compare against
Linux kernel version is 5.4.61-rt37. Each result we report is
computed from 10,000 test runs.

Table shows the results of our evaluation. We see
that Magnetite has extremely fast context switches that are
almost twice as fast as Linux on average. For mutexes
and semaphores, Magnetite has similar average-case over-
head when contended, but is slower for uncontended oper-
ations. This is a side-effect of our implementation of priority-
inheritance. In particular, while Linux is able to implement
mutex operations in a few instructions when uncontended,
priority-inheritance requires Magnetite to do an IPC operation
to our synchronization service.

For timers, our results reveal an interesting situation. Mag-
netite has much better latency than the standard POSIX inter-
face for timers. However, Linux has a special interface called
timerfd that is faster still. cFS chose to use the POSIX
standard interface, presumably because it is standard. This
means that cFS on Magnetite sees better timer performance
than on Linux. For channels, or message queues, we see that
Linux is faster in the average case, but Magnetite actually has
a better worst case performance.

Overall, we see surprisingly similar performance between
Magnetite and Linux for operations that cFS cares about.
Average case behavior is rather mixed; however, Magnetite
usually performs better in the worst case. This suggests that
cFS on Magnetite would be practical and may even improve
worst case performance.

VI. LESSONS LEARNED

Over the course of this effort, we identified several key
lessons learned about satellite flight software, its security,
and microkernel-based systems. This section describes and
discusses these lessons in detail.

Flight software is surprisingly dynamic. Our initial as-
sumption going into this effort was that satellite flight software
was very static. We assumed that controlling a satellite would
involve a fixed set of tasks that do not change, so there would
be no need for significant changes in software functionality.

Hence, the flight software could probably allocate a fixed set
of resources at startup.

This turns out to be completely wrong. Applications in
cFS can be started and stopped or added and removed from
the system at runtime. Similarly, operating system resources
like message queues, semaphores, timers, and sockets can be
dynamically created or deleted as cFS applications change
their behaviors. This supports missions that are surprisingly
dynamic, with different tasks needing to be done at different
times and often with updates and fixes occurring to parts of
the system but not to others during the course of the mission.
For example, a landing rover or actively launching satellite
will have different needs than a satellite currently collecting
data in the course of a mission or hosting multiple missions.

This dynamic approach conflicts with the usual assumptions
about real-time systems in the security community. In partic-
ular, frameworks like CAmkKES and Microkit assume that a
system has a fixed set of tasks that require fixed resources
and communicate in fixed patterns. Perhaps that is true for a
engine control unit in a car responsible for controlling braking
behavior, but it is completely incorrect for flight software. Our
Magnetite operating system builds a dynamic layer on top
of seL4 that enables these kinds of high reliability dynamic
systems.

Availability is an overarching priority. Flight software
turns the usual Confidentiality, Integrity, Availability triad on
its head, prioritizing availability above all. While this is also
common in cyber-physical systems [34], flight software has
unique challenges here because loss of availability usually
means termination of the mission since physical access is
effectively impossible.

What surprised us was how this focus on priority impacted
even the APIs exposed by cFS in its OSAL. For instance, the
majority of operations within cFS have timeouts to prevent
deadlock and allow careful scheduling of hard real-time tasks.
This also extends to the use of priority-inheritance for mutexes
to avoid priority inversion, where a low priority task delays a
high priority task, as discussed in section

Flight software often lacks isolation between compo-
nents. Although we focus in this work on securing the
operating system below cFS, our analysis of cFS revealed
a troubling design from a security perspective. In particular,
all of cFS—the core services and applications—is a single
address space. Each application or service is one or more
threads running within that shared address space.

While this allows for performant exchange of information
between apps, it provides no isolation between different cFS
apps or services. As such, a vulnerability in any app trivially
compromises the entirety of cFS. Even if other apps do not
have vulnerabilities, the attacker can trivially manipulate data
and code for all apps in the system. This is not a hypothetical
concern either; recent research shows that vulnerabilities do,
in fact, exist in cFS [13].

At the operating system level, Magnetite illustrates one
approach to mitigate this issue. Magnetite is designed as a
set of services, each of which is a separate process. These

services communicate via IPC or shared memory, but maintain
their isolated nature. As a result, a compromise in one service
does not compromise the entire operating system. A similar
approach to flight software might keep the central data bus
found in cFS, but move each core service or app into a
separate process. This appears to be the goal of the CHSS
flight software [31]].

Microkernel operating systems inherit all the problems
of distributed systems. Our experience building Magnetite
sheds significant light on why all major operating systems are
monolithic designs, despite the significant security benefit that
a microkernel design provides. While separating the operating
system into many interacting services reduces the impact of
compromise, it also introduces the numerous problems of
distributed systems to operating systems.

Once the number of interacting services grows beyond two
or three, it is surprisingly easy to establish paths where service
A calls service B which calls service C which calls service A,
resulting in a deadlock. Careful design and planning is needed
to avoid these kind of cycles. We ran into this issue more than
once while building Magnetite. Even just ensuring that time-
bound operations traverse only a small number of services can
be challenging.

A closely related issue is the way that different parts of an
operating system interact. At first glance, a filesystem has no
reason to interact with timers and time, yet filesystems include
modification and update timestamps and often rely on time to
flush filesystem caches.

Similarly, sending and receiving messages is key to systems
made up of multiple isolated components. Unfortunately, we
know that message parsing and formatting code is particularly
bug prone. This means that there is now much more of this
bug-prone code in the entire system compared to a monolithic
operating system. Techniques that can automate the serializing
and deserializing of messages can help here, but some of this
complexity is seemingly unavoidable.

VII. DISCUSSION

This section discusses other Real Time Operating Systems
(RTOSes) that are often used in space vehicles and their
security challenges. It also considers future improvements to
Magnetite.

A. Other RTOSes

Although the earliest space systems used custom operating
systems, most space vehicles today use existing commercial
RTOSes, like RTEMS [35] or VxWorks [36]. Unfortunately,
while these systems are carefully designed to provide the
predictable performance demanded by real-time systems, they
are significantly lacking from a security standpoint. RTEMS
in particular is a single address space operating system that
provides no memory permissions nor any separation between
user and kernel code [37]]. As a result, RTEMS provides no
isolation either between user-space components or between the
user-space and the kernel. Hence, any compromise in any part
of the system compromises everything.

While other operating systems used in space vehicles, like
VxWorks or real-time Linux, an increasingly popular option,
do provide isolation between components, they are monolithic
in design. In other words, the entire operating system is a
single component and any compromise in the operating system
enables an attacker to manipulate the entire operating system.

In contrast, Magnetite is a microkernel-based system. seL.4’s
formal proofs of correctness mean that the most privileged,
most important part of the system is both from free large
classes of bugs and functions correctly. For the rest of the
components of Magnetite, the separation into multiple, iso-
lated components means that a vulnerability in one of those
components only impacts that component. To pivot between
components, an adversary would need to find a vulnerability
in each desired component.

B. Future Magnetite Improvements

While Magnetite is written in Rust and separated into many
isolated processes, further security improvements are possible.
Of particular note, the Magnetite services have not been
verified, which leaves open the possibility of vulnerabilities or
correctness issues. Future work could consider the practicality
of verifying these services.

VIII. CONCLUSION

Satellite systems are essential to modern life, yet face many
challenges due to their harsh operating environment, lack
of physical access after launch, and increasing attention by
potential attackers. Unfortunately, the flight software control-
ling these space vehicles has not been designed with security
in mind, leaving these systems exposed and vulnerable. We
attempted to run NASA’s cFS flight software on the formally
verified seL.4 microkernel, with the goal of eliminating vul-
nerabilities related to the operating system. We found that the
existing tooling for high assurance systems, like CAmKES,
was not suitable for use with cFS. Instead, we developed our
own set of operating system services around selL4, requiring
more than a year of effort. We hope that this effort will inspire
further work on combining existing security techniques with
flight software.

REFERENCES

[1] D. Werner, “Hawkeye 360 detects gps interference in ukraine,” Jan
2023. [Online]. Available: https://spacenews.com/hawkeye-360- gps-ukr/

[2] M. Torrieri, “How satellite imagery magnified ukraine to the world,”
Jul 2023. [Online]. Available: https://interactive.satellitetoday.com/via/|
articles/how-satellite-imagery-magnified-ukraine- to- the- world

[3] The Associated Press, “Satellite photos reveal damage to
iranian missile bases and nuclear facilities after israeli strikes,”
Jun 2025. [Online]. Available: https://apnews.com/photo-gallery/

iran-israel-missile-bases-satellite- photos-c2ca6d9d80567403cdb46653ftb17eb0

[4] M. Burgess, “How satellite imagery magnified ukraine to the
world,” Apr 2024. [Online]. Available: https://www.wired.com/story/
the-dangerous-rise-of-gps-attacks/|

[5]1 L. Mathews, “Viasat reveals how russian hackers
knocked thousands of ukrainians offline,” 2022. [Online].
Available: https://www.forbes.com/sites/leemathews/2022/03/31/

viasat-reveals-how-russian-hackers-knocked- thousands- of-ukrainians- offline/

[6] L. Whiting, “Viasat targeted in china-linked salt typhoon cyber
campaign,” Sep 2025. [Online]. Available: https://bastille.net/
viasat-china-linked- salt-typhoon-cyber-campaign/

https://spacenews.com/hawkeye-360-gps-ukr/
https://interactive.satellitetoday.com/via/articles/how-satellite-imagery-magnified-ukraine-to-the-world
https://interactive.satellitetoday.com/via/articles/how-satellite-imagery-magnified-ukraine-to-the-world
https://apnews.com/photo-gallery/iran-israel-missile-bases-satellite-photos-c2ca6d9d80567403cdb46653ffb17eb0
https://apnews.com/photo-gallery/iran-israel-missile-bases-satellite-photos-c2ca6d9d80567403cdb46653ffb17eb0
https://www.wired.com/story/the-dangerous-rise-of-gps-attacks/
https://www.wired.com/story/the-dangerous-rise-of-gps-attacks/
https://www.forbes.com/sites/leemathews/2022/03/31/viasat-reveals-how-russian-hackers-knocked-thousands-of-ukrainians-offline/
https://www.forbes.com/sites/leemathews/2022/03/31/viasat-reveals-how-russian-hackers-knocked-thousands-of-ukrainians-offline/
https://bastille.net/viasat-china-linked-salt-typhoon-cyber-campaign/
https://bastille.net/viasat-china-linked-salt-typhoon-cyber-campaign/

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

S. Erwin, “Russia, china target spacex’s starlink in escalating space elec-
tronic warfare,” Apr 2025. [Online]. Available: https://spacenews.com/

russia-china-target- spacexs-starlink-in-escalating- space-electronic- warfare/

T. Pultarova, “White hat hackers expose iridium satellite security flaws,”
Jun 2025. [Online]. Available: https://spectrum.ieee.org/iridium-satellite
S. Jero, J. Furgala, M. A. Heller, B. Nahill, S. Mergendahl, and
R. Skowyra, “Securing the satellite software stack,” in Proceedings 2024
Workshop on Security of Space and Satellite Systems, San Diego, CA,
USA: Internet Society, 2024.

J. Willbold, M. Schloegel, M. Vogele, M. Gerhardt, T. Holz, and
A. Abbasi, “Space odyssey: An experimental software security analysis
of satellites,” in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2023, pp. 1-19.

S. Havermans, L. Baumgirtner, J. Roberts, M. Wallum, and J. Caballero,
“Fuzzing space communication protocols,” in Workshop on the Security
of Space and Satellite Systems (SpaceSec), 2025.

T. Scharnowski, F. Buchmann, S. Worner, and T. Holz, “A case study
on fuzzing satellite firmware,” in Workshop on the Security of Space
and Satellite Systems (SpaceSec), 2023.

A. Olchawa, M. Starcik, R. Fradique, and A. Boulaich, “Burning,
trashing, spacecraft crashing: A collection of vulnerabilities
that will end your space mission,” in BlackHat, 2025.
[Online]. Available: https://i.blackhat.com/BH-USA-25/Presentations/
USA-25-OlchawaStarcik- Burning- Trashing-Spacecraft- Crashing.pdf
N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Computing Surveys (CSUR), vol. 50, no. 1, pp. 1-33, 2017.

N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow
stacks,” in 2019 IEEE Symposium on Security and Privacy (SP). 1EEE,
2019, pp. 985-999.

H. Lefeuvre, N. Dautenhahn, D. Chisnall, and P. Olivier, “ SoK:
Software Compartmentalization ,” in 2025 IEEE Symposium on Security
and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society,
May 2025. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/SP61157.2025.00075

D. P. McKee, Y. Giannaris, C. Ortega, H. E. Shrobe, M. Payer,
H. Okhravi, and N. Burow, “Preventing kernel hacks with hakcs.” in
NDSS, 2022, pp. 1-17.

A. Koprowski and H. Binsztok, “Trx: A formally verified parser inter-
preter,” Logical Methods in Computer Science, vol. 7, 2011.

G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an os micro-
kernel,” ACM Transactions on Computer Systems (TOCS), vol. 32, no. 1,
pp. 1-70, 2014.

core Flight System Team, “core flight system,” 2023. [Online].
Auvailable: https://cfs.gsfc.nasa.gov/

S. Jero, J. Furgala, R. Pan, P. K. Gadepalli, A. Clifford, B. Ye, R. Khazan,
B. C. Ward, G. Parmer, and R. Skowyra, “Practical principle of least
privilege for secure embedded systems,” in 2021 IEEE 27th Real-Time
and Embedded Technology and Applications Symposium (RTAS). 1EEE,
2021, pp. 1-13.

J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-
1308, 1975.

D. Werner, “Nasa to roll out major update to core flight
software,” Feb 2025. [Online]. Available: https://spacenews.com/
nasa-to-roll-out-major-update- to- core- flight- software/

NASA Goddard, “Celebrating twenty years of
core flight software,” 2024. [Online]. Avail-
able: https://etd.gsfc.nasa.gov/capabilities/core-flight-system/news/!
celebrating-twenty- years- of-core- flight- software/

E. Geist, “Core flight system (cfs) training,” NASA, Tech. Rep.
20240000217, Jan 2024. [Online]. Available: https://ntrs.nasa.gov/
citations/20240000217

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4:
Formal verification of an os kernel,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, 2009, pp. 207-220.
G. Heiser and K. Elphinstone, “L4 microkernels: The lessons from 20
years of research and deployment,” ACM Transactions on Computer
Systems (TOCS), vol. 34, no. 1, pp. 1-29, 2016.

J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” Communications of the ACM, vol. 9, no. 3,
pp. 143-155, 1966.

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “Camkes: A component model
for secure microkernel-based embedded systems,” Journal of Systems
and Software, vol. 80, no. 5, pp. 687-699, 2007.

The sell4 Foundation, “Microkit user manual,” 2025. [Online].
Available: https://github.com/seL4/microkit/blob/main/docs/manual.md
R. W. Skowyra, S. A. Mergendahl, and R. Khazan, “Holding
the high ground: Defending satellites from cyber attack,” 2023.
[Online]. Available: |https://www.afcea.org/signal-media/cyber-edge/
holding- high- ground-defending-satellites-cyber-attack

F Prime Team, “F prime: A software ecosystem enabling the rapid
development and deployment of embedded systems for spaceflight
applications,” 2025. [Online]. Available: https://fprime.jpl.nasa.gov/

L. Tung, “Spacex: We've launched 32,000 linux
computers into space for starlink internet,”
2020. [Online]. Available: https://www.zdnet.com/article/

spacex-weve-launched-32000-linux-computers- into-space- for-starlink-internet/

B. C. Ward, R. Skowyra, S. Jero, N. Burow, H. Okhravi, H. Shrobe,
and R. Khazan, “Security considerations for next-generation operating
systems for cyber-physical systems,” in [Ist International Workshop
on Next-Generation Operating Systems for Cyber-Physical Systems
(NGOSCPS), 2019.

The RTEMS Project, “The rtems project,” Jan 2026. [Online]. Available:
https://rtems.org/

Wind River Software, “Vxworks: Real-time os for mission-critical
systems,” Jan 2026. [Online]. Available: https://www.windriver.com/
products/embedded/vxworks

The RTEMS Project, “Rtems: Memory management manager,” Jan
2026. [Online]. Available: https://docs.rtems.org/docs/6.2/posix-users/
memory_managment.html

https://spacenews.com/russia-china-target-spacexs-starlink-in-escalating-space-electronic-warfare/
https://spacenews.com/russia-china-target-spacexs-starlink-in-escalating-space-electronic-warfare/
https://spectrum.ieee.org/iridium-satellite
https://i.blackhat.com/BH-USA-25/Presentations/USA-25-OlchawaStarcik-Burning-Trashing-Spacecraft-Crashing.pdf
https://i.blackhat.com/BH-USA-25/Presentations/USA-25-OlchawaStarcik-Burning-Trashing-Spacecraft-Crashing.pdf
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00075
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00075
https://cfs.gsfc.nasa.gov/
https://spacenews.com/nasa-to-roll-out-major-update-to-core-flight-software/
https://spacenews.com/nasa-to-roll-out-major-update-to-core-flight-software/
https://etd.gsfc.nasa.gov/capabilities/core-flight-system/news/celebrating-twenty-years-of-core-flight-software/
https://etd.gsfc.nasa.gov/capabilities/core-flight-system/news/celebrating-twenty-years-of-core-flight-software/
https://ntrs.nasa.gov/citations/20240000217
https://ntrs.nasa.gov/citations/20240000217
https://github.com/seL4/microkit/blob/main/docs/manual.md
https://www.afcea.org/signal- media/cyber-edge/holding-high-ground-defending- satellites-cyber-attack
https://www.afcea.org/signal- media/cyber-edge/holding-high-ground-defending- satellites-cyber-attack
https://fprime.jpl.nasa.gov/
https://www.zdnet.com/article/spacex-weve-launched-32000-linux-computers-into-space-for-starlink-internet/
https://www.zdnet.com/article/spacex-weve-launched-32000-linux-computers-into-space-for-starlink-internet/
https://rtems.org/
https://www.windriver.com/products/embedded/vxworks
https://www.windriver.com/products/embedded/vxworks
https://docs.rtems.org/docs/6.2/posix-users/memory_managment.html
https://docs.rtems.org/docs/6.2/posix-users/memory_managment.html

	Introduction
	Background
	Satellite Flight Software
	NASA's core Flight System (cFS)
	seL4

	Analysis of cFS
	Porting cFS to seL4
	Evaluation
	Lessons Learned
	Discussion
	Other RTOSes
	Future Magnetite Improvements

	Conclusion
	References

